Vibration Characteristics and Damping Analysis of the Blisk-Deposited Hard Coating Using the Rayleigh-Ritz Method

نویسندگان

  • Feng Gao
  • Wei Sun
چکیده

For the purpose of improving the working reliability of the blisk (integrally-bladed disk) under severe environment, a passive vibration reduction method by depositing a hard coating on both sides of blades is developed and then investigated systematically. Firstly, an analytical model of the blisk-deposited hard coating is taken into account. Secondly, by using the Oberst beam theory and axial symmetry property, the composite hard-coated blade is equivalent to a special homogeneous blade possessing the equivalent material parameters. Then, energy equations of the blisk with hard-coated blades are derived by using the complex-valued modulus, and then substituted into the Lagrange equations. Additionally, eigenvalue equations of the blisk with hard-coated blades are acquired by taking advantage of Rayleigh-Ritz method, and its natural characteristics are obtained subsequently. Further, the frequency response functions of the blisk with hard-coated blades are formulated by using proportional damping to achieve its damping matrix. Finally, a stainless-steel blisk with deposited NiCoCrAlY + YSZ hard coating on both sides of the blades is chosen as the study case to conduct numerical calculations, and the results are compared with those obtained by experimental tests in terms of natural frequencies and mode shapes. The variation of natural frequencies, modal loss factors and frequency response functions of the blisk generated by hard coating are studied, respectively, and the influence of the coating thickness on the damping capacity are further discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vibration Analysis for Rectangular Plate Having a Circular Central Hole with Point Support by Rayleigh-Ritz Method

In this paper, the transverse vibrations of rectangular plate with circular central hole have been investigated and the natural frequencies of the mentioned plate with point supported by Rayleigh-Ritz Method have been obtained. In this research, the effect of the hole is taken into account by subtracting the energies of the hole domain from the total energies of the whole plate. To determine th...

متن کامل

Fluid-structure Interaction Vibration Analysis of Vertical Cylindrical Containers with Elastic Bottom Plate Made of Functionally Graded Materials

In the present paper a method is proposed to investigate the free vibration of a partially liquid-filled cylindrical tank. The mechanical properties of the container are assumed to change continuously along the thickness according to volume fraction Power-law, Sigmoid or Exponential distribution. The liquid is supposed to be incompressible and in viscid and its velocity potential is formulated ...

متن کامل

Coupled Vibration of Partially Fluid-Filled Laminated Composite Cylindrical Shells

In this study, the free vibration of partially fluid-filled laminated composite circular cylindrical shell with arbitrary boundary conditions has been investigated by using Rayleigh-Ritz method. The analysis has been carried out with strain-displacement relations based on Love’s thin shell theory and the contained fluid is assumed irrotational, incompressible and inviscid. After determining the...

متن کامل

Comparison of Two Kinds of Functionally Graded Cylindrical Shells with Various Volume Fraction Laws for Vibration Analysis

In this paper, a study on the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. The effects of the FGM configuration are taken into account by studying the frequencies of two FG cylindrical shells. Type I FG cylindrical shell has nickel on its inner surface and stainless steel on its outer surface and Type II...

متن کامل

Free Vibration Analysis of Size-Dependent, Functionally Graded, Rectangular Nano/Micro-plates based on Modified Nonlinear Couple Stress Shear Deformation Plate Theories

In the present study, a vibration analysis of functionally graded rectangular nano-/microplates was considered based on modified nonlinear coupled stress exponential and trigonometric shear deformation plate theories. Modified coupled stress theory is a non-classical continuum mechanics theory. In this theory, a material-length scale parameter is applied to account for the effect of nanostructu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017